Peracetic acid
Phân loại:
Thành phần khác
Mô tả:
Peracetic acid là gì?
Chất hóa học Peracetic acid còn được gọi là Acid peracetic, Acid peroxyacetic, PAA… có công thức hóa học là CH3CO3H. Tên thương mại của Peracetic acid với vai trò như một chất kháng khuẩn là Nu-Cidex.
Đây là một chất lỏng không màu, mùi nồng cay với công dụng như một chất có khả năng oxy hóa cực mạnh. Peracetic acid tạo thành một trạng thái cân bằng giữa chất Acid acetic (CH3COOH) và Hydrogen peroxide (H2O2), dễ phân tán và xử lý các màng sinh học, tác dụng nhanh ngay cả ở nhiệt độ thường, có khả năng tác động hiệu quả với phổ rộng vi sinh vật như vi khuẩn, nấm mốc.
Peracetic acid có những ưu điểm như không bị độ cứng ảnh hưởng, không để lại cặn trên thiết bị và không làm thay đổi hương vị, màu sắc của thực phẩm cần xử lý. Tuy nhiên, thành phần này cũng có nhược điểm như nồng độ của Peracetic acid dễ bị giảm sút hơn các chất khử trùng khác và dễ bay hơi ở ngoài không khí, có khả năng ăn mòn các loại kim loại như kẽm, thép, đồng trừ inox. Đặc biệt, khi được pha loãng, Peracetic acid không có tính ổn định cao.
Điều chế sản xuất
Peracetic acid được sản xuất công nghiệp bằng quá trình tự oxy hóa Acetaldehyde hay được hình thành khi xử lý Acid acetic bằng Hydrogen peroxide với chất xúc tác Acid mạnh.
Acetyl clorua và Anhydrit axetic có thể được sử dụng để tạo ra dung dịch Acid có hàm lượng nước thấp hơn.
Peracetic acid được tạo ra tại chỗ bởi một số chất tẩy giặt qua phản ứng của Tetraacetylethylenediamine (TAED) với sự có mặt của dung dịch Hydrogen peroxide kiềm.
Peracetic acid cũng được hình thành tự nhiên trong môi trường thông qua một loạt các phản ứng quang hóa liên quan đến Formaldehyde và các gốc quang oxy hóa.
Cơ chế hoạt động của Peracetic acid
Hỗn hợp ổn định, cân bằng giữa Peracetic acid 5%, nước, Acid axetic và Hydro peroxide được xem là một trong những chất diệt khuẩn mạnh nhất. Hoạt động của Peracetic acid chống lại một loạt các vi sinh vật bao gồm vi khuẩn hiếu khí và kỵ khí, ngoài ra còn có các bào tử vi khuẩn, nấm mốc, nấm men và tảo.
Dược động học:
Dược lực học:
Xem thêm
Tinh dầu quế là gì?
Cây quế được trồng phổ biến ở các khu vực nhiệt đới châu Á như Việt Nam, Ấn Độ và Sri Lanka. Cây quế có tên khoa học là Cinnamomum Cassia BI, thuộc giống Cinnamomum, họ Lauraceae. Cả Vỏ cây và lá cây thuộc chi này đều có tinh dầu thơm.
Vỏ cây quế dùng để chiết xuất lấy tinh dầu. Tinh dầu quế có màu vàng và hương thơm đặc trưng ấm và mạnh. Thành phần aldehyd cinamic là chủ yếu chiếm khoảng 70 - 90%. Ngày nay, tinh dầu quế được sử dụng rộng rãi trong nhiều lĩnh vực như chăm sóc sức khỏe và chăm sóc sắc đẹp.
Điều chế sản xuất
Quế được thu hoạch về sau đó được đưa vào ủ cho đến khi đủ tiêu chuẩn sẽ được đưa vào sản xuất tinh dầu.
Quế nguyên liệu được nghiền nhỏ bằng máy nghiền có công suất lớn khoảng 1 tấn nguyên liệu/1 lồng. Sau đó nguyên liệu được đưa vào nồi hấp. Nồi hấp phải đủ tiêu chuẩn áp lực hơi từ 1 - 5 atmosphere. Khi đưa nguyên liệu vào nồi hấp xong đậy kín và siết chặt nồi. Đồng thời đốt lò hơi để cấp hơi chiết xuất.
Nguyên lý chiết xuất tinh dầu quế bằng phương pháp cũng tương tự nguyên lý nấu rượu. Khi hơi nước từ nồi hơi chuyển qua nồi hấp sẽ cuốn theo tinh dầu được dẫn quan bình làm mát làm giảm nhiệt độ từ 160 độ xuống còn 30 độ.
Khi chiết xuất sẽ thu được hỗn hợp nước và tinh dầu sau đó sẽ được chứa vào bình lắng. Tinh dầu quế nặng hơn nước nên sẽ lắng xuống dưới, sau khoảng 1 giờ sẽ có sự tách biệt hoàn toàn.
Tinh dầu quế thu được sẽ được bảo quản sau đó tiếp tục tinh lọc nâng cao để loại bỏ hết nước và bụi bẩn. Mỗi nồi hấp như vậy sẽ thu được khoảng 4 - 7kg tinh dầu quế.
Cơ chế hoạt động
Chiết xuất quế, tinh dầu và các hợp chất của chúng đã được báo cáo là có khả năng ức chế vi khuẩn bằng cách làm hỏng màng tế bào. Làm thay đổi cấu trúc lipid; ức chế ATPase, phân chia tế bào, porin màng, nhu động và hình thành màng sinh học, thông qua các hiệu ứng cảm biến chống đại số.
Gelatin là gì?
Gelatin là một loại protein không mùi, không vị, có màu trong suốt hoặc hơi vàng. Đây là sản phẩm được tạo ra từ chất collagen chiết xuất ở phía dưới da, xương của động vật như da lợn hoặc trong collagen của thực vật (tảo đỏ, trái cây,...).
Gelatin có 2 dạng: Dạng bột và dạng lá. Bột hay lá gelatin đều có tác dụng làm dày, ổn định cấu trúc và tránh được hiện tượng tách lỏng sản phẩm khi chế biến món ăn.
Độ tan
Gelatin có khả năng tan trong glycerin, dung dịch kiềm và acid loãng, kết tủa trong môi trường acid hoặc kiềm đặc; thực tế không hòa tan trong aceton, cloroform, ethanol 95%, ether và methanol.
Gelatin có khả năng trương nở tốt trong nước, hấp thu lượng nước gấp 5 - 10 lần khối lượng của nó. Gelatin có thể tan trong nước ở nhiệt độ trên 40°C tạo thành một dung dịch keo và tạo gel khi làm mát ở 35 - 37°C. Hệ thống gel-sol này là một hệ thixotropic và thuận nghịch nhiệt.
Độ nhớt
Tùy thuộc vào nguồn nguyên liệu điều chế, về tỷ lệ các thành phần trong gelatin, cách điều chế mà độ nhớt của các chế phẩm khác nhau có thể khác nhau. Do đó mà gelatin có thể ứng dụng trong nhiều dạng thuốc với nhiều vai trò khác nhau như thành phần vỏ nang, chất kết dính trong viên nén, tá dược trong thuốc mỡ, thuốc đặt,…
Điều chế sản xuất gelatine
Gelatin được sản xuất từ rất nhiều nguồn nguyên liệu như xương động vật đã được khử khoáng, da lợn, da cá, da bò,… Quy trình sản xuất như sau:
Xử lý nguyên liệu thô
-
Đối với xương: Tiến hành tách bỏ canxi và các loại muối khoáng bằng cách sử dụng nước nóng hoặc một số loại dung dịch có khả năng hòa tan muối khoáng.
-
Với nguyên liệu là da của trâu, lợn, bò: Làm sạch lông, cắt nhỏ, rửa sạch,… để chuẩn bị cho quá trình chiết.
Xử lý da trước khi chiết có thể thực hiện theo 2 cách sau:
Cách 1: Quy trình axit
-
Quy trình này sử dụng nguồn nguyên liệu chủ yếu là da lợn và da cá, thỉnh thoảng sẽ dùng xương động vật.
-
Cơ sở của phương pháp này là collagen được axit hoá tới pH = 4 trong môi trường axit loãng từ 18 - 24 giờ, tuỳ vào kích thước và độ dày của nguyên liệu. Sau đó, rửa lại với nước đến khi trung hòa. Kết thúc quá trình ta được gelatin loại A.
Cách 2: Quy trình kiềm
-
Quy trình này sử dụng nguồn nguyên liệu chủ yếu là các loại da bò, trâu,…
-
Ngâm da trong dung dịch nước vôi 1-2% có thiết bị khuấy trộn gián đoạn. Sau đó rửa với nước sạch, ngâm axit và xử lý với nước nóng.
-
Cho nguyên liệu thô vào nồi, đun trong nước nóng 55-100ºC từ 3-5 lần. Mỗi từ 4–8h. Có thể thêm vào than hoạt tính để loại màu của dịch chiết.
-
Thổi không khí nóng hoặc sấy phun để làm khô. Sau đó nghiền, trộn theo yêu cầu sử dụng và đóng gói sản phẩm.
-
Sản phẩm tạo thành từ quy trình kiềm sẽ là gelatin loại B.
Cơ chế hoạt động của gelatine
Gelatin khi chìm trong chất lỏng sẽ hút ẩm và nở ra. Khi chất lỏng được làm ấm lên, các hạt trương nở tan chảy, tạo thành sol (keo chất lỏng) với chất lỏng làm tăng độ nhớt và đông đặc lại tạo thành gel khi nó nguội đi.
Trạng thái gel có thể đảo ngược sang trạng thái sol ở nhiệt độ cao hơn và sol có thể chuyển trở lại dạng gel bằng cách làm lạnh. Thời gian đông kết và độ mềm của gelatin đều bị ảnh hưởng bởi nồng độ protein, đường và nhiệt độ.
Hydroxyapatite là gì?
Hydroxyapatite với công thức hóa học là Ca5(PO4)3(OH), là dạng Calci phosphat tự nhiên có tính tương thích sinh học cao với tế bào và mô. Chất này là thành phần chính của xương và răng của người và động vật, cụ thể chiếm đến 65 - 70% khối lượng xương và 70 - 80% trong răng.
Đây là chất có màu trắng, trắng ngà, vàng nhạt hoặc xanh lơ, tùy theo điều kiện hình thành, kích thước hạt và trạng thái tập hợp. Vì đây là hợp chất bền nhiệt nên chỉ bị phân hủy ở khoảng 800 - 1.200 độ C tùy thuộc vào phương pháp điều chế và dạng tồn tại.
Các tinh thể Hydroxyapatite thường tồn tại ở dạng hình que, hình kim, hình vảy, hình cầu… được nhận biết nhờ sử dụng phương pháp hiển vi điện tử quét (SEM) hoặc hiển vi điện tử truyền qua (TEM).
Điều chế sản xuất
Hydroxyapatite được tổng hợp bằng nhiều phương pháp như kết tủa, sol-gel, siêu âm hóa học, phun sấy, điện hóa, thủy nhiệt, Composite hay phương pháp phản ứng pha rắn.
Tùy theo các phương pháp tổng hợp khác nhau cũng như các điều kiện tổng hợp khác nhau như nhiệt độ phản ứng, nồng độ, thời gian già hóa sản phẩm… mà các tinh thể có hình dạng khác nhau.
Hydroxyapatite còn được chế biến từ xương bò và chứa Canxi, Photphat, các nguyên tố vi lượng, Florua và các ion khác, Protein và Glycosaminoglycans.
Cơ chế hoạt động
Thành phần của men răng bao gồm nước, Collagen, các protein và Hydroxyapatite. Ở dạng tự nhiên, Hydroxyapatite là một dạng Canxi tạo nên 97% men răng và 70% ngà răng của con người.
Hydroxyapatite ở dạng bột mịn kích thước nano, có tên gọi là Calci Nano Hydroxyapatit (CNHA) là dạng Calci phosphat dễ được cơ thể hấp thụ nhất với tỷ lệ Calci/ Phospho trong phân tử đúng như tỷ lệ trong xương và răng.
Hydroxyapatite ở dạng màng và dạng xốp, có thành phần hóa học và đặc tính giống xương tự nhiên. Các lỗ xốp liên thông với nhau làm cho các mô sợi, mạch máu dễ dàng xâm nhập. Chính vì vậy mà vật liệu này có tính tương thích sinh học cao với các tế bào mô, có tính dẫn xương tốt, tạo liên kết trực tiếp với xương non dẫn đến sự tái sinh xương nhanh mà không bị cơ thể đào thải.
Hydrogenated Polydecene là gì?
Hydrogenated Polyisobutene là một chất lỏng không màu, thành phần này được sử dụng trong công nghệ mỹ phẩm. Cấu trúc phân tử của thành phần được hình thành không quá phức tạp vì vậy Hydrogenated Polyisobutene có độ ổn định cao, dễ dàng nhũ hóa, khi sử dụng.
Hydrogenated Polyisobutene là một chất làm mềm có thể tạo thành khi Polydecene được hydro hóa. Trên bề mặt da thành phần này tạo thành một lớp màng nhưng vẫn thông thoáng không bị bí tắc. Đặc biệt thành phần có thể tạo độ bóng và không gây nhờn cho da. Đã có nhiều nghiên cứu chứng minh cho khả năng làm mềm của Hydrogenated Polydecene. Họ đã thực hiện bằng cách thử nghiệm trên những người có làn da khô. Kết quả của nghiên cứu rất khả quan. Những người có da khô được sử dụng Hydrogenated Polydecene đều đặn 2 lần/ngày, làn da có biến chuyển cải thiện rất tốt. Ở một nghiên cứu khác, cuộc thử nghiệm bôi Hydrogenated Polydecene lên vùng vết chân chim của một số người, nếp nhăn đã giảm đáng kể.
Sử dụng nó trên da thì Hydrogenated Polyisobutene và các phân tử sẽ liên kết tạo một lớp màng mỏng bảo vệ, ngăn cản sự thoát nước giữ độ ẩm cho da. Chất này có thể thay thế cho một loại dầu khoáng vì dầu khoáng không có lợi cho sức khỏe con người và làn da. Hydrogenated Polyisobutene nó là một chất làm mềm dưỡng ẩm cho da khiến da, không bị nhờn. Hoạt chất còn có thể thay thế cho các silicon dễ bay hơi.
Hydrogenated Polydecene là một chất làm mềm lý tưởng cho các sản phẩm chăm sóc em bé vì nó tinh khiết và không gây dị ứng.
Điều chế sản xuất
Hydrogenated Polydecene là hỗn hợp của những hydrocacbon, hoạt chất bão hòa từ C30H62-C70H142 đó là quá trình được tạo ra oligome hóa trực tiếp. Đem hỗn hợp oligomer chưng cất đến từng phần nhỏ của độ nhớt được theo công thức phù hợp. Tiếp theo là hydro hóa để đạt đến độ bão hòa, tiếp tục chưng cất sao cho độ nhớt đạt yêu cầu. Độ nhớt và hàm lượng của oligomer khác nhau đối với các loại Polydecene hydro hóa khác nhau theo điều kiện và trọng lượng riêng. Polydecene đã hydro hóa để chứa chất ổn định phù hợp với yêu cầu.
Cơ chế hoạt động
Thông tin về thành phần này trong mỹ phẩm hiện còn khá khiêm tốn. Về cơ chế hoạt động của Hydrogenated Polydecene đối với làn da cũng chưa có báo cáo cụ thể.
Ethylparaben là gì?
Ethylparaben là este ethyl của axit p-hydroxybenzoic. Ethylparaben là một trong những chất thuộc nhóm các hợp chất gọi là paraben (cùng methylparaben, butylparaben, isobutylparaben và propylparaben).
Paraben từng được dùng phổ biến trong công thức của các sản phẩm mỹ phẩm với vai trò của một chất bảo quản. So với các chất bảo quản khác, paraben được ưa chuộng bởi tính chất nhẹ nhàng, không nhạy cảm và hiệu quả cao của nó.
Ngoài ra, paraben nói chung, Ethylparaben nói riêng có nguồn gốc tự nhiên từ thực vật dưới dạng axit p-hydroxybenzoic (PHBA). Trên thực tế, paraben được sử dụng trong mỹ phẩm giống hệt với những chất có trong tự nhiên. Nếu paraben được hấp thụ qua da, cơ thể con người có thể nhanh chóng chuyển hóa chúng thành PHBA và loại bỏ chúng.
Tuy nhiên, thời gian qua, có nhiều ý kiến tranh cãi xung quanh việc sử dụng paraben do nhóm các hợp chất này bị cáo buộc liên quan đến các vấn đề sức khỏe.
Insulin Pork là gì?
Insulin là hormone từ các tế bào đảo tụy ở tuyến tụy tiết ra. Insulin được tạo ra bằng cách phân lập tuyến tụy của động vật như bò và lợn từ những năm 1920-1980. Insulin người và lợn có sự khác biệt trong thành phần amino acid. Khi dùng insulin có nguồn gốc từ lợn đã gây ra một số tác dụng phụ. Quá trình sản xuất và làm tinh khiết insulin giai đoạn đó còn gặp nhiều khó khăn.
Công ty Genetech (Hoa Kỳ) đã sản xuất insulin bằng kỹ thuật di truyền đầu tiên vào năm 1982. Đây là lần đầu tiên các nhà nghiên cứu ứng dụng công nghệ sinh học vào dược phẩm thành công và sản phẩm được đưa ra thị trường.
Insulin chuyển hóa các chất carbohydrate trong cơ thể, insulin tác dụng đến việc chuyển hóa gan và các mô mỡ thành năng lượng ATP cung cấp cho hoạt động cơ thể. Insulin tổng hợp ở tế bào beta trong đảo tụy từ bộ máy tổng hợp protein trong tế bào, và có thể làm giảm nồng độ glucose trong máu.
Điều chế sản xuất
Các nhà nghiên cứu lần đầu tiên đã ứng dụng công nghệ sinh học vào dược phẩm thành công là năm 1982. Sản phẩm insulin là của Công ty Genetech được sản xuất bằng kỹ thuật di truyền đầu tiên.
Người ta dùng kỹ thuật tái tổ hợp AND chuyển gen mã hóa insulin vào tế bào vi khuẩn, E.coli sẽ sinh tổng hợp tạo ra loại peptit khi được nuôi cấy trong môi trường thích hợp.
Sản xuất theo quy trình sau: Cần chuẩn bị đoạn oligonucleotide mã hóa cho insulin: Theo trình tự cấu trúc các amino acid của insulin, có 2 chuỗi polypeptid A và B nối với nhau bằng hai cầu disulfur và 51 amino acid. Người ta đã mã hoá cho hai chuỗi A, B và tạo dòng gen tách biệt.
Phương pháp dùng plasmid của vi khuẩn hay nấm men, bằng enzyme hạn chế cắt plasmid. Nối đoạn gen mã hóa cho insulin tạo vector tái tổ hợp (pBR322), chuyển vector pBR322 vào vi khuẩn E.coli.
Vi khuẩn E.coli được lên men ở môi trường phù hợp, tách chiết thu được sản phẩm là polypeptid A và B. Trộn hai loại peptid bằng phương pháp hóa học enzym để xử lý để tạo cầu disulfur.
Cơ chế hoạt động
Insulin cần được gắn vào tế bào đích thông qua thụ cảm thể (receptor) của insulin trên bề mặt tế bào để phát huy tác dụng.
Gellan Gum là gì?
Gellan gum, chỉ số quốc tế là E418, là một chất phụ gia thực phẩm được sử dụng để thay thế cho Gelatin và thạch Agar, hiện được tìm thấy trong nhiều loại thực phẩm chế biến bao gồm mứt, kẹo, thịt và sữa thực vật.
Chất phụ gia thực phẩm này thường được sử dụng để kết dính, ổn định hoặc tạo kết cấu cho thực phẩm đã qua chế biến, tương tự như các chất tạo gel khác như Guar gum, Carrageenan, thạch Agar và Xanthan gum.
Gellan gum là một Polysaccharide anion hòa tan trong nước được tạo ra bởi vi khuẩn Sphingomonas elodea. Vi khuẩn sản sinh Gellan được phát hiện và phân lập vào năm 1978 từ mô cây hoa loa kèn trong ao nước tự nhiên ở Pennsylvania.
Gellan gum có thể chịu được nhiệt 120 độ C, được xác định là một chất tạo gel đặc biệt hữu ích trong việc nuôi cấy vi sinh vật ưa nhiệt. Chỉ cần khoảng một nửa lượng Gellan gum dưới dạng thạch có thể đạt được độ bền gel tương đương, mặc dù kết cấu và chất lượng chính xác phụ thuộc vào nồng độ của các điện tích dương hóa trị hai. Gellan gum cũng được sử dụng làm chất tạo gel trong nuôi cấy tế bào thực vật trên đĩa Petri, vì nó tạo ra một chất gel rất trong, tạo điều kiện thuận lợi cho việc phân tích tế bào và mô bằng kính hiển vi quang học.
Là một chất phụ gia thực phẩm, Gellan gum lần đầu tiên được phép sử dụng trong thực phẩm ở Nhật Bản năm 1988, sau đó đã được nhiều quốc gia khác như Mỹ, Canada, Trung Quốc, Hàn Quốc và Liên minh Châu Âu chấp thuận sử dụng trong thực phẩm, phi thực phẩm, mỹ phẩm và dược phẩm...
Gellan gum được sử dụng trong các loại sữa có nguồn gốc thực vật để giữ cho Protein thực vật lơ lửng trong sữa. Thành phần này cũng đã trở nên phổ biến trong ẩm thực cao cấp, đặc biệt là trong ẩm thực phân tử để tạo ra các loại gel có hương vị. Đầu bếp người Anh Heston Blumenthal và đầu bếp người Mỹ Wylie Dufresne được xem là những đầu bếp đầu tiên kết hợp Gellan gum vào ẩm thực tại nhà hàng cao cấp.
Điều chế sản xuất
Gellan gum là chất phát triển tự nhiên trên hoa súng.
Trong quy trình sản xuất nhân tạo, Gellan gum được sản xuất bằng cách lên men đường với trực khuẩn mủ xanh Pseudomonas elodea, bao gồm một đơn vị lặp lại của các Monome, Tetrasaccharide, là hai gốc của D-glucose và một trong mỗi gốc của axit D-glucuronic và L-rhamnose.
Cơ chế hoạt động
Gellan gum khi được ngậm nước thích hợp, có thể được sử dụng trong các công thức làm kem và sữa chua, hoạt động như một loại gel lỏng sau khi khuấy.
Aspartic Acid là gì?
Aspartic Acid (tên gọi khác là axit aminosuccinic hoặc aspartate) là một axit amin không thiết yếu được tạo ra tự nhiên trong cơ thể con người. Chúng ta có thể bổ sung Aspartic Acid rất dễ dàng bằng cách áp dụng một chế độ ăn uống đa dạng thành phần.
Trong cơ thể con người, Aspartic Acid tham gia vào quá trình tổng hợp protein và điều hòa một số hormone. Nhưng nó cũng được tổng hợp hóa học để tạo ra các chất bổ sung chế độ ăn uống. Tuy nhiên, lợi ích của nó như là một chất bổ sung đang bị tranh cãi.
Aspartic Acid gồm hai dạng là axit L-aspartic và axit D-aspartic; trong đó axit L-aspartic trở thành một phần của protein được tổng hợp trong cơ thể, tham gia thúc đẩy sản xuất các kháng thể hỗ trợ chức năng của hệ thống miễn dịch cơ thể.
Còn axit D-aspartic có mặt ở trong tuyến yên và tinh hoàn, tham gia điều chỉnh, giải phóng và tổng hợp testosterone lẫn hormone luteinizing (LH). LH chịu trách nhiệm điều tiết kích thích rụng trứng trong chu kỳ kinh nguyệt. Nó cũng có tác dụng khuyến khích sản xuất tinh trùng ở nam giới.
Tương tự các acid amin khác (Histidine, Threonine, Alanine…), Aspartic Acid được EWG xếp vào nhóm chất dưỡng da, dưỡng tóc, chất chống tĩnh điện và thành phần hương liệu. Tuy nhiên, cơ chế hoạt động cụ thể của Aspartic Acid đối với làn da khi sử dụng trong các loại mỹ phẩm vẫn chưa được báo cáo.
Điều chế sản xuất Aspartic Acid
Vào những năm 1827, Aspartic Acid được tìm thấy lần đầu dưới dạng dẫn xuất khi đun sôi nước ép măng tây bởi Plisson.
Trong rất nhiều loại thực phẩm khác nhau cũng chứa Aspartic Acid, do đó bạn rất dễ dàng để bổ sung hợp chất này cho cơ thể.
GLA là gì?
GLA (Gamma Linolenic Acid) là một loại acid béo thiết yếu trong cơ thể, mang lại nhiều lợi ích cho sức khỏe. Trong tự nhiên, GLA được tìm thấy trong chiết xuất dầu của cây hoa anh thảo, cây lưu ly, hạt nho đen, hạt gai dầu.
Một loạt các Prostaglandin như Prostaglandin E1 được sản sinh từ GLA có chức năng kiểm soát sưng, đau, huyết áp, cân bằng chất lỏng, đông máu, sản sinh hormone và hoạt động của hormone.
GLA cũng giữ vai trò quan trọng đối với sức khỏe của làn da. Khi da gặp tình trạng khô, bong tróc và thô ráp dù đã dưỡng ẩm, điều đó có thể do cơ thể đang thiếu GLA.
Các vấn đề về da như viêm da dị ứng, chàm, da khô, bệnh vẩy nến, tăng mất nước qua biểu bì (TEWL) và suy giảm chức năng hàng rào biểu bì cũng có liên quan đến sự thiếu hụt GLA.
GLA qua đường uống và bôi đều có hiệu quả trong việc điều trị các rối loạn về da, mụn trứng cá cũng như giảm mẩn đỏ và ban đỏ do bức xạ UV và duy trì làn da khỏe mạnh. Thành phần acid béo của cây lưu ly chứa 20 - 24% GLA, dầu hoa anh thảo là 8 - 10% GLA và dầu nho đen chứa 15 - 17%. Trong đó, phổ biến hơn cả là dầu cây lưu ly được dùng như một thành phần trong các công thức bôi ngoài da để điều trị các tình trạng da khác nhau bao gồm da khô, chàm, vết thương và viêm da.
Điều chế sản xuất
Các sản phẩm tinh dầu thường được sản xuất bằng công nghệ ép nhiệt ở nhiệt độ cao lên đến 150 độ C để tinh chế ra dạng tinh dầu lỏng. Phương pháp này dễ thực hiện và có chi phí đầu tư thấp. Tuy nhiên, nhiệt độ ép quá cao sẽ khiến cho GLA dễ dàng bị biến đổi sang chất khác hay mất hoặc giảm đi hiệu quả của sản phẩm với sức khỏe. Để khắc phục những nhược điểm trên, công nghệ ép lạnh tinh dầu đã ra đời. Ép lạnh là công nghệ sử dụng máy ép ly tâm, tránh tạo nhiệt, để chắt lọc từng giọt tinh dầu tinh khiết.
Cơ chế hoạt động
GLA là một acid béo omega-6, mà cơ thể có thể chuyển đổi thành các chất làm giảm viêm và tăng trưởng tế bào.
Green tea là gì?
Green Tea (Trà xanh) có nguồn gốc từ Trung Quốc và Ấn Độ, đã được tiêu thụ và ca ngợi vì lợi ích sức khỏe của nó trong nhiều thế kỷ trên toàn cầu, nhưng gần đây mới trở nên phổ biến ở Hoa Kỳ.
Trà là thức uống được tiêu thụ nhiều nhất trên thế giới sau nước. Tuy nhiên, 78 phần trăm trà được tiêu thụ trên toàn thế giới là màu đen và chỉ khoảng 20 phần trăm là màu xanh.
Tất cả các loại trà, trừ trà thảo mộc, đều được ủ từ lá khô của bụi Camellia sinensis. Mức độ oxy hóa của lá quyết định loại trà.
Green tea được làm từ lá chứa ôxy hóa và là một trong những loại trà ít được chế biến. Do đó, nó chứa nhiều chất chống oxy hóa, nhất và các polyphenol có lợi.
- Green tea đã được sử dụng trong y học cổ truyền Ấn Độ và Trung Quốc.
- Có rất nhiều loại green tea khác nhau có sẵn.
- Green tea có thể giúp ngăn ngừa một loạt bệnh bao gồm cả ung thư.
Điều chế sản xuất
Hiện nay các phương pháp chiết xuất các hợp chất catechin từ chè xanh - hay còn gọi là polyphenol chè xanh đƣợc áp dụng rộng rãi ở Trung Quốc và trên thế giới.
Dựa trên tính chất hóa học đặc trƣng của catechin là các hợp chất phân cực, hay gặp trong chè xanh dưới dạng các glycosid dễ tan trong nước nóng và các dung môi hữu cơ có độ phân cực cao như ethanol, methanol, hoặc hỗn hợp của chúng với nước nên người ta thường chọn các dung môi này để chiết các catechin ở giai đoạn đầu tiên.
Kết quả sàng lọc hoạt tính chống ôxy hóa của các dịch chiết cũng cho thấy khi chiết chè xanh bằng các dung môi phân cực cho các sản phẩm có hoạt tính mạnh hơn so với khi chiết bằng các dung môi có độ phân cực yếu như n-hexane, ete dầu hỏa, ether ethylic, hay hỗn hợp của ether ethylic với chloroform, aceton, ethyl acetate [59-61]. Mặc dầu vậy, trong dịch chiết tồn tại một lượng lớn các hợp chất không mong muốn bị chiết cùng với catechin, thêm vào đó các glycosid cũng bị thủy phân khi sử dụng dung môi chiết là dung dịch nước axit.
Các dung môi phân cực yếu, lại có đặc tính ưu việt hơn khi tiến hành tinh chế các dịch chiết của dung môi phân cực. Phần lớn các catechin có phân tử lượng thấp và các aglycon đều bị hòa tan trong các dung môi này và hầu hết các hợp chất này đều có tính chống ôxy hóa cao.
- MAE: Phương pháp chiết có hỗ trợ viba. Dung môi Ethanol/nƣớc (1:1, v/v), tỷ lệ dung môi/nguyên liệu là 20/1. Thời gian tác dụng của viba trong 4 phút và ngâm tĩnh 90 phút ở 20°C.
- UE: Phương pháp chiết có hỗ trợ siêu âm. Dung môi Ethanol/nước (1:1, v/v) tỷ lệ dung môi/nguyên liệu là 20/1. Thời gian chiết 90 phút, nhiệt độ chiết 20 - 40°C.
- Soxhlet: Chiết hồi lưu trên phễu Soxhlet trong 45 phút, nhiệt độ chiết 85°C.
Nhìn chung, các phương pháp nêu trên đều có ưu điểm cho hiệu suất thu nhận catechin cao, phù hợp với các nước phát triển có trình độ kỹ thuật và công nghệ cao, tự chủ được các dung môi và hóa chất cơ bản. Đây cũng là các yếu tố kỹ thuật quan trọng để có giá thành sản phẩm thấp, đặc biệt có ý nghĩa đối với các quốc gia và vùng lãnh thổ không có nguyên liệu chè phế loại.
Cơ chế hoạt động
- Tăng khả năng đốt cháy calo (sự sinh nhiệt);
- Khởi động khả năng đốt cháy chất béo (oxy hóa chất béo);
- Cung cấp sự bảo vệ chống oxy hóa mạnh mẽ;
- Green Tea cung cấp một loạt các chất dinh dưỡng cho sức khỏe, bao gồm mức độ EGCG cao hơn;
- EGCG là chất chống oxy hóa phong phú và mạnh mẽ nhất được tìm thấy trong các lá trà. Sản phẩm này có chứa 400mg EGCG cho liều dùng hàng ngày tối đa.
Glucosyl rutin là gì?
Danh pháp IUPAC: 4-G-alpha-D-glucopyranosylrutin.
PubChem CID: 5489459.
Tên gọi khác: Glu-rutin; alphaG-rutin; alpha-glucosylrutin.
Glucosyl rutin có công thức phân tử hóa học là C33H40O21 và trọng lượng phân tử là 772.7 g/mol.
Glucosyl rutin bắt nguồn từ chất Rutin, Rutin đã được tìm thấy trong nhiều loại trái cây như: mơ, anh đào, quả mọng, cam, quýt, đậu azuki, rau hay các loại thảo mộc như trà xanh và trà đen. Đặc biệt, nguồn phong phú nhất có chứa Rutin là kiều mạch. Rutin có đặc tính chống oxy hóa và khả năng ổn định sắc tố, tuy nhiên Rutin đã bị hạn chế trong ứng dụng do khả năng hòa tan kém. Từ đó người ta đã phát hiện và điều chế ra alpha Glucosyl rutin, một chất có khả năng vượt trội hơn Rutin về độ hòa tan trong nước, có thể cao hơn Rutin lên đến mười hai ngàn lần.
Điều chế sản xuất Glucosyl rutin
Alpha Glucosyl rutin được tạo thành ở nồng độ cao bằng cách cho phép enzym chuyển saccharide tác động lên chất lỏng có hàm lượng rutin cao ở dạng huyền phù hoặc dạng dung dịch, để thực hiện phản ứng chuyển saccharide. Kết quả là alpha Glucosyl rutin được thu hồi dễ dàng từ hỗn hợp phản ứng bằng cách cho phép nó tiếp xúc với nhựa macroreticular tổng hợp.
Alpha Glucosyl rutin vượt trội về khả năng hòa tan trong nước, khả năng chống lại ánh sáng và tính ổn định so với Rutin nguyên vẹn, cũng như có các hoạt động sinh lý như Rutin nguyên vẹn có.
Cơ chế hoạt động
Glucosyl rutin được kế thừa các đặc tính hữu ích từ Rutin đồng thời được nâng cấp lên một bậc về khả năng hòa tan trong nước. Alpha Glucosyl rutin được sử dụng thuận lợi như một chất tạo màu vàng, chất chống oxy hóa, chất ổn định, chất ngăn ngừa phai màu, chất cải thiện chất lượng, chất hấp thụ tia UV. Ngoài ra nó còn có khả năng ngăn ngừa sự hư hỏng trong thực phẩm, dược phẩm, hay sử dụng trong mỹ phẩm với vai trò chất tái tạo da và chất làm trắng da.
Beta-Sitosterol là gì?
Beta-sitosterol hay β-Sitosterol (C29H50O) là chất được tìm thấy trong thực vật, cụ thể là trong trái cây, rau, quả và hạt. Ngoài ra, Beta-sitosterol còn có sẵn trong dạng bổ sung chế độ ăn uống.
Được các nhà hóa học gọi là "ester sterol của thực vật”, Beta-sitosterol có thể sử dụng để làm thuốc, mang lại một số lợi ích nhất định cho sức khỏe. Cụ thể như Beta-sitosterol có khả năng làm giảm mức cholesterol bằng cách hạn chế lượng cholesterol vào cơ thể chúng ta. Mặt khác, Beta-sitosterol còn có khả năng liên kết cùng tuyến tiền liệt giúp làm giảm sưng/viêm.
Cơ chế hoạt động
Có công thức phân tử tương tự cholesterol, Beta-sitosterol còn được gọi là sterol thực vật. Beta-sitosterol hoạt động như một chất oxy hóa tự nhiên, có khả năng ức chế sterol methyltransferase, làm giảm cholesterol máu, giảm viêm sưng trong bệnh phì đại lành tính tiền liệt tuyến (BPH).
Sản phẩm liên quan